Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bull Exp Biol Med ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727955

RESUMEN

We studied the influence of extracellular vesicles from the follicular fluid of a young donor on gene expression (MKI67, MYBL2, CCNB1, CCND1, CCNE1, CALM2, BAX, NDRG1, TP53I3, VEGF, VCAN, HAS2, CTSL2, PIBF1, RPL37, PFKP, GPX3, and AQP3) in embryos of women of different ages. According to nanoparticle tracking analysis data, the concentration of extracellular vesicles was 3.75±0.47×1011 particles/ml and the mean particle size was 138.78±9.90 nm. During co-culturing of the follicular fluid extracellular vesicles with blastocysts of young women, we observed significantly increased expression of mRNA for genes CTSL2, CCND1, CCNE1, VEGF and reduced expression of BAX gene mRNA in comparison with embryos in women of late reproductive age. We hypothesized that addition of extracellular vesicles of the oocyte follicular fluid from a young donor to the culture medium of embryos could slow down apoptosis process typical of blastocyst cells in women above 36 years.

2.
Bull Exp Biol Med ; 173(4): 560-568, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36094592

RESUMEN

We studied the effect of co-culturing of extracellular vesicles in the follicular fluid of young women and women of advanced maternal age on sperm motility. Vesicles were obtained by differential centrifugation. The sperm fraction was isolated from the seminal fluid of 18 patients (age 28-36 years). The spermatozoa were incubated with vesicles (1:2 ratio) for 60 or 120 min at 37°C in a CO2 incubator. A fraction of spermatozoa incubated without vesicles served as the control. After the incubation, the sperm samples were sedimented by centrifugation, fixed in 2.5% glutaraldehyde, and analyzed by transmission electron microscopy. RNA was isolated from the follicular fluid vesicles by column method followed by cDNA synthesis in a reaction mixture according to miScript II RT Kit protocol (Qiagen). After 60-min incubation with extracellular vesicles from the follicular fluid of women of advanced maternal age, the sperm motility and hyperactivation slightly changed in comparison with the group where incubation was performed with follicular fluid vesicles from young women and control group. Follicular fluid miRNA profiles in women of different ages varied, which suggests different functional compositions and effects of follicular fluid vesicles of different age groups on sperm characteristics. Transmission electron microscopy revealed differences in the interaction of follicular fluid vesicles from women of different age groups with spermatozoa. Further study of the effect of extracellular vesicles from the follicular fluid and analysis of their transcriptomic, proteomic, and metabolomic composition on sperm mobility and fertilizing ability will improve the effectiveness of assisted reproductive technology programs in patients with male infertility.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Adulto , Dióxido de Carbono/farmacología , ADN Complementario/farmacología , Vesículas Extracelulares/genética , Femenino , Líquido Folicular/fisiología , Glutaral/farmacología , Humanos , Masculino , Edad Materna , MicroARNs/genética , Proteómica , Semen , Motilidad Espermática , Espermatozoides
3.
Bull Exp Biol Med ; 172(2): 254-262, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34855079

RESUMEN

We studied the effect of extracellular vesicles of the follicular fluid on morphofunctional characteristics of human spermatozoa using CASA (computer-assisted sperm analysis) analytical system. The vesicles were obtained by sequential centrifugation at different rotational speeds and frozen at -80°C in the Sydney IVF Gamete Buffer medium. The sperm fraction was isolated from the seminal fluid of 21 patients aged 27-36 years by differential centrifugation in a density gradient. The precipitate was suspended in Sydney IVF Gamete Buffer to a concentration of 106/ml and incubated with vesicles (1:2) at 37°C in a CO2 incubator for 30 min and 1 h. Sperm fraction incubated without vesicles served as the control. After incubation, some sperm samples were centrifuged at 700g for 5 min and fixed in 2.5% glutaraldehyde in 0.1 M buffer for transmission electron microscopy. After 30-min and 1-h incubation, the progressive and total sperm motility improved, the curvilinear and linear velocity of spermatozoa did not change significantly. Incubation with vesicles significantly changed the trajectory of sperm movement, which can attest to an increase in their hyperactivation and, probably, fertilizing capacity. Analysis of the effect of extracellular vesicles of follicular fluid on sperm motility will help to improve the effectiveness of assisted reproductive technology programs with male infertility factor by improving sperm characteristics in patients with asthenozoospermia and increasing the fertilizing ability of the sperm.


Asunto(s)
Vesículas Extracelulares/fisiología , Líquido Folicular/citología , Espermatozoides/fisiología , Acrosoma/metabolismo , Acrosoma/fisiología , Adulto , Vesículas Extracelulares/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Técnicas In Vitro , Masculino , Análisis de Semen , Transducción de Señal/genética , Motilidad Espermática/fisiología , Espermatozoides/citología
4.
Bull Exp Biol Med ; 171(1): 109-121, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34050833

RESUMEN

Epidermolysis bullosa is a severe hereditary disease caused by mutations in genes encoding cutaneous basement membrane proteins. These mutations lead to dermal-epidermal junction failure and, as a result, to disturbances in the morphological integrity of the skin. Clinically, it manifests in the formation of blisters on the skin or mucosa that in some cases can turn into non-healing chronic wounds, which not only impairs patient's quality of life, but also is a live-threatening condition. Now, the main approaches in the treatment of epidermolysis bullosa are symptomatic therapy and palliative care, though they are little effective and are aimed at reducing the pain, but not to complete recovery. In light of this, the development of new treatment approaches aimed at correction of genetic defects is in progress. Various methods based on genetic engineering technologies, transplantation of autologous skin cells, progenitor skin cells, as well as hematopoietic and mesenchymal stem cells are studied. This review analyzes the pathogenetic methods developed for epidermolysis bullosa treatment based on the latest achievements of molecular genetics and cellular technologies, and discusses the prospects for the use of these technologies for the therapy of epidermolysis bullosa.


Asunto(s)
Epidermólisis Ampollosa , Calidad de Vida , Membrana Basal , Epidermólisis Ampollosa/genética , Epidermólisis Ampollosa/patología , Epidermólisis Ampollosa/terapia , Humanos , Piel/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...